Biophysical characterization of the EF-hand and SAM domain containing Ca2+ sensory region of STIM1 and STIM2.

نویسندگان

  • Le Zheng
  • Peter B Stathopulos
  • Guang-Yao Li
  • Mitsuhiko Ikura
چکیده

Stromal interaction molecule 1 (STIM1) is an endoplasmic reticulum (ER)-membrane associated Ca(2+) sensor which activates store-operated Ca(2+) entry (SOCE). The homologue, STIM2 possesses a high sequence identity to STIM1 ( approximately 61%), while its role in SOCE seems to be distinct from that of STIM1. In order to understand the underlying mechanism for the functional differences between STIM1 and STIM2, we investigated the biophysical properties of the luminal Ca(2+)-binding region which contains an EF-hand motif and a sterile alpha-motif (SAM) domain (hereafter called EF-SAM; residues 58-201 in STIM1 and 149-292 in STIM2). STIM2 EF-SAM has a low apparent Ca(2+)-binding affinity (K(d) approximately 0.5mM), which is similar to that reported for STIM1 EF-SAM. In the presence of Ca(2+), STIM2 EF-SAM is monomeric and well-folded, analogous to what was previously observed for STIM1 EF-SAM. In contrast to apo STIM1 EF-SAM, apo STIM2 EF-SAM is more structurally stable and does not readily aggregate. Our circular dichroism (CD) data demonstrate the existence of a long-lived, well-folded monomeric state for apo STIM2 EF-SAM, together with a less alpha-helical/partially unfolded aggregated state which is detectable only at higher protein concentrations and higher temperatures. Our biophysical studies reveal a structural stability difference in the EF-SAM region between STIM1 and STIM2, which may account for their different biological functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Auto-inhibitory role of the EF-SAM domain of STIM proteins in store-operated calcium entry.

Stromal interaction molecules (STIM)s function as endoplasmic reticulum calcium (Ca(2+)) sensors that differentially regulate plasma membrane Ca(2+) release activated Ca(2+) channels in various cells. To probe the structural basis for the functional differences between STIM1 and STIM2 we engineered a series of EF-hand and sterile α motif (SAM) domain (EF-SAM) chimeras, demonstrating that the ST...

متن کامل

Structural and Mechanistic Insights into STIM1-Mediated Initiation of Store-Operated Calcium Entry

Stromal interaction molecule-1 (STIM1) activates store-operated Ca2+ entry (SOCE) in response to diminished luminal Ca2+ levels. Here, we present the atomic structure of the Ca2+-sensing region of STIM1 consisting of the EF-hand and sterile alpha motif (SAM) domains (EF-SAM). The canonical EF-hand is paired with a previously unidentified EF-hand. Together, the EF-hand pair mediates mutually ind...

متن کامل

Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins.

STIM1 (where STIM is stromal interaction molecule) is a candidate tumour suppressor gene that maps to human chromosome 11p15.5, a region implicated in a variety of cancers, particularly embryonal rhabdomyosarcoma. STIM1 codes for a transmembrane phosphoprotein whose structure is unrelated to that of any other known proteins. The precise pathway by which STIM1 regulates cell growth is not known....

متن کامل

Oligomerization and Ca2+/calmodulin control binding of the ER Ca2+-sensors STIM1 and STIM2 to plasma membrane lipids

Ca2+ (calcium) homoeostasis and signalling rely on physical contacts between Ca2+ sensors in the ER (endoplasmic reticulum) and Ca2+ channels in the PM (plasma membrane). STIM1 (stromal interaction molecule 1) and STIM2 Ca2+ sensors oligomerize upon Ca2+ depletion in the ER lumen, contact phosphoinositides at the PM via their cytosolic lysine (K)-rich domains, and activate Ca2+ channels. Differ...

متن کامل

STIM2 Is an Inhibitor of STIM1-Mediated Store-Operated Ca2+ Entry

The coupling mechanism between endoplasmic reticulum (ER) Ca(2+) stores and plasma membrane (PM) store-operated channels (SOCs) remains elusive [1-3]. STIM1 was shown to play a crucial role in this coupling process [4-7]; however, the role of the closely related STIM2 protein remains undetermined. We reveal that STIM2 is a powerful SOC inhibitor when expressed in HEK293, PC12, A7r5, and Jurkat ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 369 1  شماره 

صفحات  -

تاریخ انتشار 2008